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Principles of Control - D. Morgan - Primers in Biology. 2006. 3/68



Introduction
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Molecular regulators of the cell cycle

G1/S cyclin S cyclin

G1/5-Cdk §-Gdk

.
4 3
G | 5

Start G2m metaphase—anaphase
- M

The Cell Cycle - Principles of Control - D. Morgan - Primers in Biology. 2006.

G1/S cyclin/Cdk: cycD/Cdk4-6, cycE/Cdk2

S cyclin/Cdk: cycA/Cdk2-1

M cyclin/Cdk: cycB/Cdk2-1

APC: APC-cdhl, APC-cdc20 + o6



Phase and checkpoint generic concept
[ Ielelololele}

What is a cell cycle phase?

A phase 7;
@ is a sequence of events of the form ey,..., e,

@ which connects an initial ; and a final state n¢
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Phase and checkpoint generic concept
[ Ielelololele}

What is a cell cycle phase?

A phase 7;
@ is a sequence of events of the form ey,..., e,

@ which connects an initial ; and a final state n¢

€1 e e3 €4 €5 €6

ni nf

© Canonical phase: a given consensus sequence of events
@ Its hyper-rectangle: set of all permutations of the canonical sequence

© Admissible subset: permutations observed within the biological systems
(formalized by a mathematical model)
9/68



Phase and checkpoint generic concept
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A canonical phase and its hyper-rectangle
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Phase and checkpoint generic concept
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If some events are not biologically admissible ...
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Phase and checkpoint generic concept
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Thus some states are unreachable from the initial state of the phase
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Phase and checkpoint generic concept
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Admissible subset

Hyper-rectangle

Biologically reachable states
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Phase and checkpoint generic concept
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Checkpoint between two adjacent phases
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Phase and checkpoint generic concept
[elelelolote] }

Formalization of a checkpoint between two-adjacent phase

@ No permutation allowed: events that canEnd m; and those that canStart 741

@ Permutations of events admitted by the cell cycle model
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Phase and checkpoint generic concept
[elelelolote] }

Formalization of a checkpoint between two-adjacent phase

@ No permutation allowed: events that canEnd m; and those that canStart 741

@ Permutations of events admitted by the cell cycle model

René Thomas modelling framework and Genetically modified Hoare logic

16 /68



Phase formalization: René Thomas's formalism and Hoare logic
©000000000000

The René Thomas formalism

,
g
(b >=1)

Biological Regulatory Graph with Multiplex ¢ = (V, M, E)

@ V: a finite set of variables v together with a bound b, € N*

@ M: a finite set of multiplexes m labelled by a propositinal formula ¢,
(atoms: v =n where ne[0,b,]).

@ E: a set of edges where Ec M x V

E~1(v): the set of predecessors of v
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Phase formalization: René Thomas's formalism and Hoare logic
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substitution n7: V — N such that
vveV, n(v)el0,by]

b =>=1)

Kap Kay
b=1
(active) Kb,y Kb iPresa}
KaiabsBy | | KaiAbsB)
b=0
(inactive) Kb,y Kb, iPresa)
a=0 a=1
(inactive) (active)
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Phase formalization: René Thomas's formalism and Hoare logic
0®00000000000

substitution n7: V — N such that
vveV, n(v)el0,by]

b =>=1)

Set of resources w of a variable v within a state n

Given a state 77, w is the set resources of v if
— w o
Ko Ko N |= @Y where:

b=1 ‘ oY =( A\ om) A ( A\ Pm)

(active) | Kby Kb, iPresA) ety me (E71(v) \ w)

Kaabs) | | Kaiabs)

b=0
(inactive) | Kpg Kb, iPresa)
a=0 a=1
(inactive) (active)
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Phase formalization: René Thomas's formalism and Hoare logic
0®00000000000

substitution n7: V — N such that
vveV, n(v)el0,by]

b =>=1)

Set of resources w of a variable v within a state n

Given a state 77, w is the set resources of v if

|— w o
Kag Kap nFQVME&
b=1 0 =( A om) A ( N Pm)
(active) | Kby Kb, iPresA) ety me (E71(v) \ w)
b0 Katabssy | | Katabss) Ky,» symbolizes a dynamical parameter
(inactive) | Kpg Kb, iPresa)
Parameterization o
a=0 a=1
(inactive)  (active) substitution o : Z — N such that

VKyw€ X, 0(Kyw)€[0,by]
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Phase formalization: René Thomas's formalism and Hoare logic
00@0000000000

The René Thomas' formalism

Kag = 0, Kaapsey = L

Kag Kag Kby = 0, Kp(presar = 1.
a, a,
b=1
(active) Kb,y Kb, iPresA}
b0 Ka,iAbsBy KaiAbsB)
(inactive) Ko,y Kb,(Presa}
a=0 a=1
(inactive) (active)
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Phase formalization: René Thomas's formalism and Hoare logic
00@0000000000

The René Thomas' formalism

Kag = 0, Kaapsey = L

Kb, =0, Kb,P A = 1.
b1 Kay Kagp ! (PresAl
_. Kb,{} Kb,{PresA} 0
(active) Asynchronous transitions graph
Given a parameterization o,
@ Set of vertices: set of possible states,
Ka,AbsB) Ka,iabsB)
b=0 K P @ there is a transition n — 7’ if v e V such that
. . b, b,{PresA}
(inactive) ( ) ( )and
a=0 a=1 l( ) ( )+1ifU( Vw)>77(v)
(inactive) (active) n'(v)=n (V) 1if o(Ky,w) <n(v)
9 YWeV,vV£v = 75/(vV)=n()

22/68



Phase formalization: René Thomas's formalism and Hoare logic
[olele] Yololelelelelolote}

The René Thomas' formalism

Kay  |a- Kag
b=1
(active) Kb,y Kb, (Presa) , .
René Thomas: syntax and semantic of an event
b bt o Change of value of a variable: v+ or v—.
Katabsgy  |ag| Kagabssy @ Transition between two adjacent states
b=0 !
(inactive) Kby Kb, (Presa) n—n
a=0 a=1
(inactive) (active)
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Phase formalization: René Thomas's formalism and Hoare logic
[ole]e]eY Tolelelelelolole}

The René Thomas' formalism

Kag a- Ka
b=1
(active) Koy Kb, Presa) Syntax and semantic of an event
. " @ Change of value of a variable: v+ or v—.
@ Transition between two adjacent states
b0 KaiabsBl |5+ | Katabs) n—n'
(inactive) Kby{} Kb,(PresA}
a=0 a=1
(inactive) (active)
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Phase formalization: René Thomas's formalism and Hoare logic
[ole]e]eY Tolelelelelolole}

The René Thomas' formalism

Kag a- Ka
b=1
(active) Kb,y Kb, (Presa) Syntax and semantic of an event
0 " @ Change of value of a variable: v+ or v—.
@ Transition between two adjacent states
bo KaabsBr |4+ ?mAm& n—n'
(inactive) Kb biPresAl o a+ b+ a—, b—
a=0 a=1
(inactive) (active)
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Phase formalization: René Thomas's formalism and Hoare logic
00000®0000000

The genetically modified Hoare logic: syntax and semantics of a trace

precondition P path p postcondition @

a=0 a=0
syntax : a+ ; b+ ; a— ; b—
b=0 b=0



Phase formalization: René Thomas's formalism and Hoare logic
00000®0000000

The genetically modified Hoare logic: syntax and semantics of a trace

precondition P path p postcondition @
a=0 a=0
syntax . a+ ; b+ : a— ; b
{ b=0 } { b=0 }
semantics :
npi=P nQF Q
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Phase formalization: René Thomas's formalism and Hoare logic
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The genetically modified Hoare logic: syntax and semantics of a trace

precondition P path p postcondition @
a=0 a=0
syntax : a+ ) b+ ; a- ; b—
b=0 b=0
semantics :
npl=P nQkFQ

To prove that the formalized biological trace is admitted by a Thomas model:
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The genetically modified Hoare logic: syntax and semantics of a trace

precondition P path p postcondition @
a=0 a=0
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Phase formalization: René Thomas's formalism and Hoare logic
0000000e00000

The genetically modified Hoare logic: inference rules

Hoare logic sequential composition rules
{P1} p1 (P2}  {P2} p2 {Q}
{P1} p1;p2 {Q}

precondition Py path p postcondition @

a=0 a=0
syntax : a+ ) b+ ) a— ; b—
{ b=0 } { b=0 }

semantics :

Dijkstra: wp(a+;b+;a-;b-,Q)
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Phase formalization: René Thomas's formalism and Hoare logic
0000000e00000

The genetically modified Hoare logic: inference rules

Hoare logic sequential composition rules
{P1} p1 (P2}  {P2} p2 {Q}
{P1} p1;p2 {Q}

precondition Py path p postcondition @

a=0 a=0
syntax : a+ ) b+ ) a— ; b—
{ b=0 } { b=0 }

semantics :

Dijkstra: wp(a+;b+;a-;b-,Q) = wp(a+;b+;a-,wp(b-,Q))
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Phase formalization: René Thomas's formalism and Hoare logic
0000000080000

The genetically modified Hoare logic: inference rules

Decrementation rules Constraint on parametrization
o, = A (PV=>Kiw<v)
@, A Qv—v-1]} v- {Q vty |
precondition Py path p postcondition @
a=0 a=0
syntax : a+ ) b+ ' a— ; b—
b=0 b=0

semantics :

wp(a+;b+;a-;b-,Q) = wp(a+;b+;a-,wp(b-,Q))
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Phase formalization: René Thomas's formalism and Hoare logic
0000000008000

The genetically modified Hoare logic: inference rules

precondition Py path p postcondition @

a=0 a=0
syntax : a+ ' b+ ) a-— ; b—
{ b=0 } { b=0 }

semantics :

wp(a+;b+;a-;b-, Q) =wp(a+t;b+;a—,{a=0Ab=1AKp<1})

36/68



Phase formalization: René Thomas's formalism and Hoare logic
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The genetically modified Hoare logic: inference rules

precondition Py path p postcondition @

a=0 a=0
syntax : a+ ' b+ ) a-— ; b—
{ b=0 } { b=0 }

semantics :

wp(a+;b+;a-;b-,Q) = wp(at;b+{a=1Ab=1AKpy1 AKsapsBi<1})
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Phase formalization: René Thomas's formalism and Hoare logic
0000000000080

The genetically modified Hoare logic: inference rules

precondition Py path p postcondition @
a=0 a=0
syntax : a+ ' b+ ) a-— ; b—
{ b=0 } { b=0 }
semantics :
wp(a+t;b+;a-;0-,Q) = wp(at,{a=1Ab=0AKp o1 A K, absBi<1 A Kb presai>1})
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Phase formalization: René Thomas's formalism and Hoare logic
000000000000e

The genetically modified Hoare logic: inference rules

precondition Py path p postcondition @
a=0 a=0
syntax : a+ ; b+ ; a— ; b—
{ b=0 } { b=0 }
semantics :
o wp(p,Q) = {a=0Ab=0AKp <1 AKaabsgi<i A Kb Presa>1 A Kag>1}
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Phase formalization: René Thomas's formalism and Hoare logic
000000000000e

The genetically modified Hoare logic: inference rules

precondition Py path p postcondition @
a=0 a=0
syntax : a+ ; b+ ; a— ; b—
{ b=0 } { b=0 }
semantics :
o wp(p,Q) = {a=0Ab=0AKp <1 AKaabsgi<i A Kb Presa>1 A Kag>1}

@ Bernot et al. CMSB 2015, Bernot et al. TCS 2019
e HoareFol (Folschette 2019), TotemBioNet (Boyenval et al. CMSB 2020)
@ Model selection: ¢ | Vnpl=P, o,np F wp(p, Q)
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Our cell cycle model and its checkpoints
©000000000000

Formalization of a checkpoint between two-adjacent phase

@ No permutation allowed: events that canEnd m; and those that canStart w1

© Permutations of events admitted by the cell cycle model

Proof of concept
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Our cell cycle model and its checkpoints

O®00000000000

Molecular regulators of the cell cycle

G1/S cyclin S cyclin

G1/5-Cdk §-Gdk

.
4 3
G | 5

Start G2m metaphase—anaphase
- M

The Cell Cycle - Principles of Control - D. Morgan - Primers in Biology. 2006.

G1/S cyclin/Cdk: cycD/Cdk4-6, cycE/Cdk2 (variable sk)

S cyclin/Cdk: cycA/Cdk2-1 (variable a)

M cyclin/Cdk: cycB/Cdk2-1 (variable b)

APC: APC-cdhl (variable en), APC-cdc20 (variable ep). 1268



Our cell cycle model and its checkpoints

OO®@0000000000

Our updated cell cycle model reflects checkpoints

noEnl
len>=1)
b

N, -
i((en>=1) | (ep>=1))

noWEEL
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Our cell cycle model and its checkpoints
0008000000000

The canonical cell cycle and its phases

{Pg1} I'5k+;en—;sk+‘;a+;sk—;sk—;a'+;en+;b+;en—;b+;ep+;a—;a—;b—;b—;ep—;en-%— {Pg1}
L 1L I L 1]
G1 S G2 M
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Our cell cycle model and its checkpoints
0008000000000

The canonical cell cycle and its phases

{PGg1)  sk+;en—;sk+;a+;sk—sk—; at;en+; bi;en—: b+ ep+;a—a—; b— b—;ep—ent {Pg1}

Gl S G2 M
S (replication)
_________ Gl e
: r---======°=°=°=°=°=°=°=°=°="="=""=-"=---=-=-=-=- 0 T o-T-TTTTTTTT=== 1
I 1 1
I 1 1
11 000011 [sk+ en- sk+ a+ sk- sk- ERS '
L !
I 1 1
| 1
. ep- en+ 1 G2
1
: 1
I 1
I 1
I 1
I 1
| en+ b+ X
1
! b- b- a- a- ep+ b+ en- X
I 1
I 1
| 1
I 1
I 1

M (mitosis)



Our cell cycle model and its checkpoints
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The canonical cell cycle and its phases

{PGg1)  sk+;en—;sk+;a+;sk—sk—; at;en+; bi;en—: b+ ep+;a—a—; b— b—;ep—ent {Pg1}

Gl S G2 M
S (replication)

_________ Gl e
! r---=-=-=" -~ ==°°=="="="="="°="=-=-== 0 Te/eTTTTTTT=-T=== 1
v nmyeLE Pal n61/s ns/62 '
I 1 1
" 000011 |sk+ en- sk+ at+ sk- sk- at+ .
L !
I 1 1

N 1
: ep- en+ 1 G2

1

: 1
I 1
I 1
I 1
I 1
] en- b+ :
1
! b- b- a- a- ep+ b+ en- X
I 1
I 1
| 1
I 1
I 1

M (mitosis)



Our cell cycle model and its checkpoints
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The canonical cell cycle and its phases

{PGg1)  sk+;en—;sk+;a+;sk—sk—; at;en+; bi;en—: b+ ep+;a—a—; b— b—;ep—ent {Pg1}

Gl S G2 M
S (replication)
T Gl s m s s s mm s o mm oo -
1 F---- ___P ____________________________________ 1
L1 vyl E Pa n61/s 1s/62 |
V! S~ 1
" 000011 |sk+ en- sk+ a+ sk- sk- a+ '
L 1
I 1 1
1 : : : !
| ep- CPR Recruitment en- : G2
1 . .
: PCNA activation CPR Activation :
! |
1
| en+ b+ !
1
1 b- b- a- a- ep+ b+ en- X
X |
I 1
| 1
I 1
I 1

""""""""""""""" M (mitesis)
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Admitted subset of the G1 hyper-rectangle

NMwm/G1

(000011)

sk+

(100011)

sk+

(200011)

en—

en—

en—

(000001)

sk+

(100001)

sk+

(200001)

ne1/s F Qa1

nMmMm/G1

Our cell cycle model and its checkpoints
0000®00000000

(000011)

sk+

(100011)

en—

L 4

(100001)

sk+

(200001)

@ Only the canonical path is admitted by our cell cycle model

e wp(p, Qg1) is unsatisfiable for all p € {(sk+;sk+;en—),(en—;sk+; sk+)}

ng1/s F Qa1
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Our cell cycle model and its checkpoints
0000080000000

The admitted subpart of the hyper-rectangle by the model

ni

€1

€5
€2
€1 €5
€3 €3
€6
€4 €4
€

Hyper-rectangle

Biologically admitted states

nf
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Our cell cycle model and its checkpoints
000000®000000

canEnd and canStart predicates

@ Canonical phase 7;: {P} p {Q}
@ Hyper-rectangle
© Admitted paths within the hyper-rectangle
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gitlab.com/totembionet/

Our cell cycle model and its checkpoints
000000®000000

canEnd and canStart predicates

@ Canonical phase 7;: {P} p {Q}
@ Hyper-rectangle
© Admitted paths within the hyper-rectangle

canEnd, (E, ;) < 3 p' € permutations(p) | (o(wp(p’,Q)) A E =last(p'))
canStart; (S, ;) < 3 p' € permutations(p) | (o(wp(p’,Q)) A S = first(p'))

SWI Prolog Boyenval et al. 2020, CMSB

Tool paper about TotemBioNet
gitlab.com/totembionet/
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gitlab.com/totembionet/

Our cell cycle model and its checkpoints
0000000800000

isRequired predicate and finally a first checkpoint predicate

checkpoint(m;,7j+1)

52/68



Our cell cycle model and its checkpoints
0000000800000

isRequired predicate and finally a first checkpoint predicate

checkpoint(m;,7j+1)
Jo | Vm;€[G1,S,G2,M]

53/68



Our cell cycle model and its checkpoints
0000000800000

isRequired predicate and finally a first checkpoint predicate

checkpoint(m;,7j+1)

3o | Vr;€[GL,S,G2,M], VS,VE
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Our cell cycle model and its checkpoints
0000000800000

isRequired predicate and finally a first checkpoint predicate

checkpoint(m;,7j+1)

3o | Vm€[GL,S5,G2,M], VS, VE,

canEnd;(E,7n;) A canStart;(S,m;11) = isRequired,(E,S)  SWiProlog
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Our cell cycle model and its checkpoints
0000000800000

isRequired predicate and finally a first checkpoint predicate

checkpoint(m;,7j+1)
Jo | Vmi€[GL,S,G2,M], VS,VE,

ii;»

canEnd;(E,7n;) A canStart;(S,m;11) = isRequired,(E,S)  SWiProlog

000011 100011 200011

000001 100001 » 200001 100001 > 000001

a+ a+ a+

+ 4
210001 110001 > 010001
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Our cell cycle model and its checkpoints
0000000080000

isRequired predicate and finally a first checkpoint predicate

isRequired, (E,S)

)IAS=3+

E = sk+H

v

T beforeE N afterE
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Our cell cycle model and its checkpoints
000000000e000

isRequired predicate and finally a first checkpoint predicate

iSReqUireda'(E7 s) < (O-(KvsrwbeforeE) - nbeforeE(VS)) X (O(KvsvwafterE) - T]afterE(VS)) = O

E = sk+

+

1 beforeE NafterE
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Our cell cycle model and its checkpoints

0000000000800

Does our cell cycle model reflect checkpoints? The answer

b4 pr: canonical path Py : precondition Qr: postcondition
G1 sk+,en-,sk+ sk=0nep=0Aa=0Ab=0Aren=1 Ps
S a+,sk-,sk- sk=2nep=0Aa=0Ab=0Aen=0 Pgo
G2 a+,en+,b+,en- sk=0nep=0Aa=1Ab=0Aen=0 Pum
M b+,ep+,a-,a-,b-,b-,en+,ep- | sk=0Anep=0na=2Ab=1Aen=0 Pg1

@ Cell cycle regulations
graph
@ Set of parametrizations o

o {Ps} px {Qnr}
vV € {G1,S,G2, M}
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Our cell cycle model and its checkpoints
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Does our cell cycle model reflect checkpoints? The answer

b4 pr: canonical path Py : precondition Qr: postcondition
G1 sk+,en-,sk+ sk=0nep=0Aa=0Ab=0Aren=1 Ps
S a+,sk-,sk- sk=2nep=0Aa=0Ab=0Aen=0 Pgo
G2 a+,en+,b+,en- sk=0nep=0Aa=1Ab=0Aen=0 Pum
M b+,ep+,a-,a-,b-,b-,en+,ep- | sk=0Anep=0na=2Ab=1Aen=0 Pg1
@ Cell cycle regulations — checkpoint.pl —

graph
@ Set of parametrizations o

o {Ps} px {Qnr}
vV € {G1,S,G2, M}

SWI Prolog g
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Our cell cycle model and its checkpoints

0000000000800

Does our cell cycle model reflect checkpoints? The answer

b4 pr: canonical path Py : precondition Qr: postcondition
G1 sk+,en-,sk+ sk=0nep=0Aa=0Ab=0Aren=1 Ps
S a+,sk-,sk- sk=2nep=0Aa=0Ab=0Aen=0 Pgo
G2 a+,en+,b+,en- sk=0nep=0Aa=1Ab=0Aen=0 Pum
M b+,ep+,a-,a-,b-,b-,en+,ep- | sk=0Anep=0na=2Ab=1Aen=0 Pg1

@ Cell cycle regulations — checkpoint.pl —

graph
@ Set of parametrizations o

o {Ps} px {Qnr}
vV € {G1,S,G2, M}

SWI Prolog g

o o = wp(pr,, Qr;)
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Our cell cycle model and its checkpoints
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Does our cell cycle model reflect checkpoints? The answer

b4 pr: canonical path Py : precondition Qr: postcondition
G1 sk+,en-,sk+ sk=0nep=0Aa=0Ab=0Aren=1 Ps
S a+,sk-,sk- sk=2nep=0Aa=0Ab=0Aen=0 Pgo
G2 a+,en+,b+,en- sk=0nep=0Aa=1Ab=0Aen=0 Pum
M b+,ep+,a-,a-,b-,b-,en+,ep- | sk=0Anep=0na=2Ab=1Aen=0 Pg1

@ Cell cycle regulations — checkpoint.pl —

graph
@ Set of parametrizations o

o {Ps} px {Qnr}
vV € {G1,S,G2, M}

- A

SWI Prolog !

o o = wp(pr,, Qr;)

A checkpoint(mj,mj+1)
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Does our cell cycle model reflect checkpoints? The answer

b4 pr: canonical path Py : precondition Qr: postcondition
G1 sk+,en-,sk+ sk=0nep=0Aa=0Ab=0Aren=1 Ps
S a+,sk-,sk- sk=2nep=0Aa=0Ab=0Aen=0 Pgo
G2 a+,en+,b+,en- sk=0nep=0Aa=1Ab=0Aen=0 Pum
M b+,ep+,a-,a-,b-,b-,en+,ep- | sk=0Anep=0na=2Ab=1Aen=0 Pg1

@ Cell cycle regulations
graph
@ Set of parametrizations o

o {Ps} px {Qnr}
vV € {G1,S,G2, M}

— checkpoint.pl —

- A

SWI Prolog !

o o = wp(pr,, Qr;)
A checkpoint(mj,mj+1)
@ For each ¢ and 7:
© E | canEnd(E,m)
@ S | canStart(S, )
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Our cell cycle model and its checkpoints
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Does our cell cycle model reflect checkpoints? Outputs

Checkpoint || Eval | | o |= checkpoint |

G1/S True 16/32
S/G2 True 32/32
G2/M True 32/32

M/G1 True 32/32
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Does our cell cycle model reflect checkpoints? Outputs

Our cell cycle model and its checkpoints

00000000000 e0

Checkpoint || Eval | | o |= checkpoint | b4 canStart(S, ) canEnd(E,m)
G1/S True 16/32 G1 S=[sk+] E=[sk+]
S/G2 True 32/32 S S=[a+] E=[sk-]
G2/M True 32/32 G2 S=[a+] E=[en-]
M/G1 True 32/32 M S=[b+] E=[a-,b-,en+,ep-]
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Does our cell cycle model reflect checkpoints? Outputs

Checkpoint || Eval | | o |= checkpoint | b4 canStart(S, ) canEnd(E,m)
G1/S True 16/32 G1 S=[sk+] E=[sk+]
S/G2 True 32/32 S S=[a+] E=[sk-]
G2/M True 32/32 G2 S=[a+] E=[en-]
M/G1 True 32/32 M S=[b+] E=[a-,b-,en+,ep-]

0/327 Not yet!
n'C
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Conclusion

Proof of concept: formalization of a checkpoint between two adjacent phases J

67/68



Our cell cycle model and its checkpoints
000000000000e

Conclusion

Proof of concept: formalization of a checkpoint between two adjacent phases J

Formalization of a checkpoint in the case of a phase exit

@ By excess formalization of a phase domain using its hyper-rectangle

@ Negation of the checkpoint bypass

Enrich the approach with additional properties on cell cycle checkpoints

@ Any event in S and M already realized cannot be undone

@ Integration of DNA damage response pathways
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Conclusion

Proof of concept: formalization of a checkpoint between two adjacent phases J

Formalization of a checkpoint in the case of a phase exit

@ By excess formalization of a phase domain using its hyper-rectangle

@ Negation of the checkpoint bypass

Enrich the approach with additional properties on cell cycle checkpoints

@ Any event in S and M already realized cannot be undone

@ Integration of DNA damage response pathways

Thank you !
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Integration of DNA damage response pathways

Aurora,
MAD, Bub

M
ATR-Chk1 %
ATM-Chk2 @ ®®
G2

@ G1

S&' p16-Rb
ATM-Chk2-p53

[ ATR-Chk1 S

Gabrielli et al. 2012
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Negation of checkpoint bypass

Tunnel phase

Given m€[GL,S, G2, M|, the initial (resp. final) state of a phase 7 described by the a
precondition Py (resp. Q):

isTunnel(nr) < P, = A(u/an—'( \V Yh,) U Qﬂ)

n'#m

where v is the characteristic formula of the hyper-rectangle H
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