Mammalian cell cycle: formalizing phases

Déborah Boyenval Journée annuelle du GT Bioss 2021

November 23, 2021

Understanding the interactions between oscillating biological systems

CÔTE D'AZUR

DIGITAL SYSTEMS

FOR HUMANS GRADUATE SCHOOL AND RESEARCH

SPARKS Team Gilles Bernot and Jean-Paul Comet

Franck Delaunay Team

Introduction
000000

Our updated cell cycle model

Three steps of formalization 00000000

Mammalian cell cycle

The Cell Cycle Principles of Control - D. Morgan - Primers in Biology. 2006.

Our updated cell cycle model

Three steps of formalization

Conclusion

Molecular regulators of the cell cycle

The Cell Cycle - Principles of Control - D. Morgan - Primers in Biology. 2006.

- G1/S cyclin/Cdk: cycD/Cdk4-6, cycE/Cdk2
- S cyclin/Cdk: cycA/Cdk2-1
- M cyclin/Cdk: cycB/Cdk2-1
- APC: APC-cdh1, APC-cdc20

Introduction Our updated cell cycle model 000000

Cell cycle modelling: three observations

The Cell Cycle - Principles of Control - D. Morgan - Primers in Biology. 2006.

Numerous models of the cell cycle: a wide variety of formalisms

 Introduction
 Our updated cell cycle model
 Three steps of formalization
 Conclusion

 Cell cycle modelling: three observations

The Cell Cycle - Principles of Control - D. Morgan - Primers in Biology. 2006.

- Numerous models of the cell cycle: a wide variety of formalisms
- Inter-phase checkpoints (G1/S, S/G2 and G2/M) and intra-M checkpoint (SAC) are integral of the cell cycle
- 9 But the prior question of the formalization of the phases is not widely questioned

Inspiring cell cycle models

Model	Semantics	About phases		
Fauré <i>et al.</i> 2006	Boolean	Cell cycle SCC (Strongly Connected Component)		
Tyson and Novàk 2008	Differential	A few deterministic trajectories		
Gérard <i>et al.</i> 2009	Differential	A few deterministic trajectories		
Traynard <i>et al.</i> 2016	Multivaluated	Cell cycle SCC		
Behaegel <i>et al.</i> 2016	Hybrid	Hoare triple (a few paths) UNIVERSITÉ		
Diop <i>et al.</i> 2019	Boolean	State partition of SCC		

Inspiring cell cycle models

Model	Semantics	About phases		
Fauré <i>et al.</i> 2006	Boolean	Cell cycle SCC (Strongly Connected Component)		
Tyson and Novàk 2008	Differential	A few deterministic trajectories		
Gérard <i>et al.</i> 2009	Differential	A few deterministic trajectories		
Traynard <i>et al.</i> 2016	Multivaluated	Cell cycle SCC		
Behaegel <i>et al.</i> 2016	Hybrid	Hoare triple (a few paths) UNIVERSITÉ		
Diop <i>et al.</i> 2019	Boolean	State partition of SCC		

• Some experimental traces reflected: not exhaustive ordering of events

Inspiring cell cycle models

Model	Semantics	About phases		
Fauré <i>et al.</i> 2006	Boolean	Cell cycle SCC (Strongly Connected Component)		
Tyson and Novàk 2008	Differential	A few deterministic trajectories		
Gérard <i>et al.</i> 2009	Differential	A few deterministic trajectories		
Traynard <i>et al.</i> 2016	Multivaluated	Cell cycle SCC		
Behaegel <i>et al.</i> 2016	Hybrid	Hoare triple (a few paths) UNIVERSITÉ		
Diop <i>et al.</i> 2019	Boolean	State partition of SCC		

- Some experimental traces reflected: not exhaustive ordering of events
- Checkpoints are characterised by the irreversibility of phase transitions.

Introduction
000000

Formalization of cell cycle phases: should be properly questionned

A cell cycle phase is a series of events \rightarrow discrete description.

A cell cycle phase is a series of events \rightarrow discrete description.

• What are the events characterising a phase?

A cell cycle phase is a series of events \rightarrow discrete description.

- What are the events characterising a phase?
- Non deterministic order of events within a phase

A cell cycle phase is a series of events \rightarrow discrete description.

- What are the events characterising a phase?
- Non deterministic order of events within a phase
- Behaegel *et. al* 2016 JBCB: A phase is characterised by a path and an initial state (Hoare triple)

(based on *Genetically modified Hoare logic* - Bernot et al. 2019, TCS)

A cell cycle phase is a series of events \rightarrow discrete description.

- What are the events characterising a phase?
- Non deterministic order of events within a phase
- Behaegel *et. al* 2016 JBCB: A phase is characterised by a path and an initial state (Hoare triple)

(based on *Genetically modified Hoare logic* - Bernot et al. 2019, TCS)

Formalization of a phase where the order of events is comprehensively questioned.

Our updated cell cycle model •••• Three steps of formalization

Conclusion

The René Thomas' formalism

Static description (BRGM):

Introduction 000000	Our updated cell cycle model ○●○		Three steps of formalization	Conclusi 000	
The René Thom	as' formalism				
(1)		(2)		(3)	
PresA $a \ge 1$ AbsB $!(b \ge 1)$ $K_{a,\{\}} = 0$ $K_{a,\{AbsB\}} = 1$ $K_{b,\{\}} = 0$ $K_{b,\{PresA\}} = 1$	b $b=1$ (active) b=0 (inactive)	$\begin{bmatrix} K_{a,\{\}} \\ K_{b,\{\}} \end{bmatrix} \begin{bmatrix} K \\ K_{b,\{\}} \end{bmatrix}$ $\begin{bmatrix} K_{a,\{AbsB\}} \\ K_{b,\{\}} \end{bmatrix} \begin{bmatrix} K_{a,\{AbsB\}} \\ K_{b,\{AbsB\}} \end{bmatrix}$ $\begin{bmatrix} K_{a,\{AbsB\}} \\ K_{b,\{AbsB\}} \end{bmatrix}$ $\begin{bmatrix}$	$b = \frac{b}{b}$ $PresA = b$ $b = \frac{b}{b}$ $PresA = b$ $b = 1$ $tive)$	= 1 $= 0$ $a = 0$ $a = 1$	

000000		000	be steps of formalization	000
The René Thon	nas' formalism			
(1)		(2)	(3	;)
PresA a >= 1 a AbsB !(b >= 1) $\begin{cases} K_{a,{}} = 0\\ K_{a,{}AbsB} = 1\\ K_{b,{}} = 0\\ K_{b,{}PresA} = 1 \end{cases}$	b $b = 1$ (active) b = 0 (inactive)	$\begin{pmatrix} K_{a,\{\}} \\ K_{b,\{\}} \end{pmatrix} \begin{pmatrix} K_{a,\{\}} \\ K_{b,\{PresA\}} \end{pmatrix}$ $\begin{pmatrix} K_{a,\{AbsB\}} \\ K_{b,\{\}} \end{pmatrix} \begin{pmatrix} K_{a,\{AbsB\}} \\ K_{b,\{PresA\}} \end{pmatrix} \begin{pmatrix} K_{a,\{AbsB\}} \\ K_{b,\{PresA\}} \end{pmatrix}$ $a = 0 \qquad a = 1 $ (inactive) (active)	b = 1 $b = 0$ $a = 0$	a=1

Model = all $K_{v,\omega}$ are instanciated

Introduction	Our updated cell cycle model	Three steps of formalization	Conclusio
000000	००●		000
Our updated	model: does it reflect che	eckpoints?	

Introduction	Our updated cell cycle model	Three steps of formalization	Conclusion
000000		●0000000	000
Three steps to de	fine a phase		

An exemple of a phase π_i :

 $\{P_{\pi_i}\} \ p_{\pi_i} \ \{Q_{\pi_i}\}$

$$\{v_1 = 3 \land v_2 = 0\}$$
 $v_1 +; v_2 -; v_2 -; v_1 +; v_2 -; v_1 + \{v_1 = 3 \land v_2 = 0\}$

O Canonical phase : Elementary Hoare Triple (one canonical path)

Introduction	Our updated cell cycle model	Three steps of formalization	Conclusion
000000		●0000000	000
Three steps to de	efine a phase		

An exemple of a phase π_i :

 $\{P_{\pi_i}\} \ p_{\pi_i} \ \{Q_{\pi_i}\}$

 $\{v_1 = 3 \land v_2 = 0\}$ $v_1 +; v_2 -; v_2 -; v_1 +; v_2 -; v_1 + \{v_1 = 3 \land v_2 = 0\}$

O Canonical phase : Elementary Hoare Triple (one canonical path)

2 Its hyper-rectangle : All permutations of the canonical path

Introduction	Our updated cell cycle model	Three steps of formalization	Conclusion
000000		•0000000	000
Three steps	to define a phase		

An exemple of a phase π_i :

 $\{P_{\pi_i}\} \ p_{\pi_i} \ \{Q_{\pi_i}\}$

 $\{v_1 = 3 \land v_2 = 0\}$ $v_1 +; v_2 -; v_2 -; v_1 +; v_2 -; v_1 + \{v_1 = 3 \land v_2 = 0\}$

- **O Canonical phase** : Elementary Hoare Triple (one canonical path)
- **2** Its hyper-rectangle : All permutations of the canonical path
- Admissible hyper-rectangle : Paths within the hyper-rectangle that are compatible with biological knowledge given a set of cell cycle models (automated formal verification)

Our updated cell cycle model

Three steps of formalization

Conclusion

Canonical phase encoded by $\{P_{\pi_i}\}\ p_{\pi_i}\ \overline{\{Q_{\pi_i}\}}$

Our updated cell cycle model

Three steps of formalization

Conclusion

Canonical phase encoded by $\{P_{\pi_i}\}$ p_{π_i} $\{Q_{\pi_i}\}$

Our updated cell cycle model

Three steps of formalization

Conclusion

Canonical phase encoded by $\{P_{\pi_i}\}\ p_{\pi_i}\ \{Q_{\pi_i}\}$

$$P_{\pi_{i}} \equiv (v_{1} = 0 \land v_{2} = 3)$$

$$V_{1} + \cdots + V_{2} - \cdots + V_{2} - \cdots + V_{1} + \cdots + V_{2} - \cdots + V_$$

Our updated cell cycle model

Three steps of formalization

Conclusion

Hyper-rectangle extracted from the canonical phase

$$P_{\pi_i} \equiv (v_1 = 0 \land v_2 = 3)$$

Our updated cell cycle model

Three steps of formalization

Conclusion

Hyper-rectangle extracted from the canonical phase

$$P_{\pi_i} \equiv (v_1 = 0 \land v_2 = 3)$$

Introduction Our updated cell cycle model Three steps of formalization 0000000 000

$$P_{\pi_i} \equiv (v_1 = 0 \land v_2 = 3)$$

$$P_{\pi_i} \equiv (v_1 = 0 \land v_2 = 3)$$

$$P_{\pi_i} \equiv (v_1 = 0 \land v_2 = 3)$$

 Introduction
 Our updated cell cycle model
 Three steps of formalization
 Conclusion

 Some permutations inside the hyper-rectangle are not admissible

$$P_{\pi_i} \equiv (v_1 = 0 \land v_2 = 3)$$

 Introduction
 Our updated cell cycle model
 Three steps of formalization
 Conclus

 000000
 000
 000
 000
 000

$$P_{\pi_i} \equiv (v_1 = 0 \land v_2 = 3)$$

 Introduction
 Our updated cell cycle model
 Three steps of formalization
 Cc

 000000
 000
 000
 000
 000

Some permutations inside the hyper-rectangle are not admissible

$$P_{\pi_i} \equiv (v_1 = 0 \land v_2 = 3)$$

Weakest precondition $(K_{v,\omega})$

Introduction
000000

Our updated cell cycle model 000

Three steps of formalization

Conclusion

Feasible hyper-rectangle computation

- Canonical cell cycle phase $\{P_{\pi_i}\} p_{\pi_i} \{Q_{\pi_i}\}$:
- Output: Base of the second second
- Feasible paths in the hyper-rectangle

Introduction 000000	Our updated cell cycle model	Three steps of formalization 0000000●	Conclusion 000
Feasibl	e hyper-rectangle computation		
1	Canonical cell cycle phase $\{P_{\pi_i}\} p_{\pi_i} \{Q_{\pi_i}\}$: Hyper-rectangle		
3	Feasible paths in the hyper-rectangle		

 $p' \in permutations(p_{\pi_i})$ et $wp(\{P_{\pi_i}\} p' \{Q_{\pi_i}\}) \implies isFeasible(P_{\pi_i}, p_{\pi_i}, p')$

Introduction 000000	Our updated cell cycle model	Three steps of formalization 0000000●	Conclusion 000
Feasible hyp	er-rectangle computation		
Canoni	cal cell cycle phase $\{P_{\pi_i}\} p_{\pi_i} \{Q_{\pi_i}\}$.}:	

- Output: Book of the second second
- Feasible paths in the hyper-rectangle

 $p' \in permutations(p_{\pi_i})$ et $wp(\{P_{\pi_i}\} p' \{Q_{\pi_i}\}) \implies isFeasible(P_{\pi_i}, p_{\pi_i}, p')$

isFeasible(EtatI,P,Perm):- permutation(P,Perm), wp(EtatI,Perm).

Introduction 000000	Our updated cell cycle model	Three steps of formalization 0000000●	Conclusion 000					
Feasible hyper-rectangle computation								

- **(**) Canonical cell cycle phase $\{P_{\pi_i}\} p_{\pi_i} \{Q_{\pi_i}\}$:
- Output Provide Hyper-rectangle
- Feasible paths in the hyper-rectangle

 $p' \in permutations(p_{\pi_i})$ et $wp(\{P_{\pi_i}\} p' \{Q_{\pi_i}\}) \implies isFeasible(P_{\pi_i}, p_{\pi_i}, p')$

isFeasible(EtatI,P,Perm):- permutation(P,Perm), wp(EtatI,Perm).

Boyenval et al. 2020, CMSB Tool paper about TotemBioNet gitlab.com/totembionet/

Our updated cell cycle model

Three steps of formalization

Conclusion •00

Checkpoint between two adjacent phases

37 / 39

Our updated cell cycle model

Three steps of formalization

Conclusion

Checkpoint between two adjacent phases

Integration of DNA damage response pathways

Gabrielli et al. 2012

A Hoare triple H

- $H : {PRE} PATH {POST}$
- PRE : a=0, b=1, c=0
- PATH : b-; a+; c+; a-; b+
- POST : a=0, b=1, c=1

$$H_{ex}: \{a=0, b=1, c=0\} \quad b-; a+; c+; a-; b+ \{a=0, b=1, c=1\}$$

$$\downarrow Postcondition Q$$

A Hoare triple H

- $H : {PRE} PATH {POST}$
- PRE : a=0, b=1, c=0
- PATH : b-; a+; c+; a-; b+
- POST : a=0, b=1, c=1

A Hoare triple H

- $H : {PRE} PATH {POST}$
- PRE : a=0, b=1, c=0
- PATH : b-; a+; c+; a-; b+
- POST : a=0, b=1, c=1

$$H_{ex}: \{a = 0, b = 1, c = 0\} \quad b - \ ; \ a + \ ; \ c + \ ; \ a - \ ; \ b + \{a = 0, b = 1, c = 1\}$$

$$\downarrow$$
New postcondition $Q_2:$

$$(\mathbf{K}_{\mathbf{b},\omega_1} \ge \mathbf{1}) \land (\mathbf{K}_{\mathbf{a},\omega_2} < \mathbf{1}) \land a = \mathbf{1} \land b = 0 \land c = 1$$

A Hoare triple H

- $H : {PRE} PATH {POST}$
- PRE : a=0, b=1, c=0
- PATH : b-; a+; c+; a-; b+
- POST : a=0, b=1, c=1

$$H_{ex}: \{a = 0, b = 1, c = 0\} \quad b - ; a + ; c + ; a - ; b + \{a = 0, b = 1, c = 1\}$$

$$\downarrow$$
New postcondition $Q_2:$

$$\dots \qquad (\mathbf{K}_{\mathbf{b},\omega_1} \ge \mathbf{1}) \land (\mathbf{K}_{\mathbf{a},\omega_2} < \mathbf{1}) \land a = \mathbf{1} \land b = 0 \land c = 1$$

A Hoare triple H

- $H : {PRE} PATH {POST}$
- PRE : a=0, b=1, c=0
- PATH : b-; a+; c+; a-; b+
- POST : a=0, b=1, c=1

${\tt TotemBioNet}$ a tool for exhaustive identification of K

TotemBioNet : a tool for exhaustive identification of K

- https://gitlab.com/totembionet/totembionet
- Boyenval et al., What is a cell cycle checkpoint ? The TotemBioNet answer, CMSB20.
- www.i3s.unice.fr/~boyenval/video/CMSB20_DeborahBOYENVAL.flv