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Understanding the interactions between biological oscillating systems
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The study of oscillating processes

Biological knowledge from experiments
Observation of biological oscillations (circadian clock and cell cycle time series)
Highlighting the mechanisms underlying oscillations (gain/loss of function)

Feillet et al. 2015
Frontier in Neurology

Red: G1 phase marker
Blue: S/G2 phase marker
Green: Clock marker
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The study of oscillating processes

Logical modeling framework of biological regulatory network
Formalizes the interactions between biological species using logical formulas
Is an oscillatory behavior compatible with these formalized interactions?
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The study of oscillating processes

Logical modeling framework of biological regulatory network
Formalizes the interactions between biological species using logical formulas
Is an oscillatory behavior compatible with these formalized interactions?

a= 0 ⇔ a is inactive (the same for b)
a= 1 ⇔ a activates b, b = 1 ⇔ b inhibits a

a≥ 1 ⇔ a is a resource of b
¬(b ≥ 1) ⇔ b is a resource of a

A resource is the presence of an activator or the absence of an inhibitor.
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The study of oscillating processes

Logical modeling framework of biological regulatory network
Formalizes the interactions between biological species using logical formulas
Is an oscillatory behavior compatible with these formalized interactions?

b = 0

b = 1

a= 0 a= 1

Kv ,ω formalizes the influence of all the regulators of a variable on its activity
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Logical modeling framework of biological regulatory network
The value of Kv ,ω is the value towards which a variable v is attracted given a set of its

resources ω
(1) (2) (3)


Ka,{} = 0
Ka,{AbsB} = 1
Kb,{} = 0
Kb,{PresA} = 1
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What is a logical model of a biological system?
Interaction graph + One parametrization (transition graph)


Ka,{} = 0
Ka,{AbsB} = 1
Kb,{} = 0
Kb,{PresA} = 0

 b = 0

b = 1

a= 0 a= 1

•


Ka,{} = 0
Ka,{AbsB} = 0
Kb,{} = 0
Kb,{PresA}=1

 b = 0

b = 1

a= 0 a= 1

•

These two models with a non-functional interaction (crossed edge) =⇒ No oscillation 19 / 41
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What are the necessary conditions to observe certain behaviors?

What are the models that produce oscillations?
Odd number of inhibiting edges (i.e. a functional negative cycle)

There is a mathematical proof! So it is generalized to any model!

What are the models that produce multiple steady states?
Even number of inhibiting edges (i.e. a functional positive cycle)

b = 0

b = 1

a= 0 a= 1

•

•

This interaction graph will never produce oscillations, but can produce bistability !
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Logical reasoning on higher dimensional model

Let’s try to answer these questions:
Does this biological interaction network produce oscillations?
What are the key interactions to obtain an oscillatory behaviour?
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Logical reasoning on higher dimensional model

Let’s try to answer these questions:
Does this biological interaction network produce oscillations?
What are the key interactions to obtain an oscillatory behaviour?

This is clearly non trivial !
It depends on the functionality of negative cycles

i.e. the parameterizations
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Logical reasoning on higher dimensional model

Automation of the logical reasonning (René Thomas’ approach)
Application of the logical modeling formalism manually: certainly not!
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A very complex interaction graph of the energy metabolism!

14 variables and 100 parameters
More parametrizations than stars in
the universe
Khoodeeram et al. 2017 - Advances in
Systems and Synthetic Biology
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Learning of parameterizations verifying given biological behaviors

The TotemBioNet tool
Boyenval et al. 2020 - CMSB
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Learning parameterizations verifying given biological behaviors

The TotemBioNet tool
Boyenval et al. 2020 - CMSB
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Logical reasoning on higher dimensional model

Qualitative dynamics (René Thomas’ approach)
Concentration space discretization
Opens the door to formal methods in theoretical computer science
No blind spot: all parameterizations (interaction graph dynamics) are calculated
Unlike ODEs system for example

b = 0
(inactive)

b = 1
(active)

a= 0
(inactive)

a= 1
(active)
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The cell cycle study case

sk (starting kinases) :
CycE/Cdk2
a : CycA/Cdk1 et
CycA/Cdk2
b : CycB/Cdk1
en (enemies) :
APC-cdh1, Wee1,
p21, p27, PP1 et
PP2
ep (exit protein) :
APC-cdc20
gf (growth factors) :
EGF, FGF, PDGF, . . .

Interaction graph of the mammalian cell cycle progression
(revised from Behaegel et al. 2015)
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What are the models that verify the major properties of the cell cycle?

The cell cycle itself: Observation of a canonical cyclic path (Hoare’s logic)

{earlyG1} sk+;en−;sk+
G1

;a+;sk−;sk−
S

;a+;en+;b+;en−
G2

;b+;ep+;a−;a−;b−;b−;ep−;en+
M

{earlyG1}

earlyG1 (one initial state) specified by sk = 0∧a= 0∧b = 0∧ep = 0∧en= 1∧gf = 1

Never far from biological data: significant bibliographical work (variable activities)
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The cell cycle itself: Observation of a canonical cyclic path

earlyG1

sk+sk+ en- sk+

CPR Recruitment at all ORI
(Complexes of Pre-Replication)

CPR Activation

a+ sk- sk- a+

en+

b+

en-b+ep+a-a-b-b-

en+

ep-

G1
S (Replication)

G2

M (Mitosis)
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What are the models that verify the major properties of the cell cycle?

The quiescence phase blocking in absence of growth factors (Temporal logics - CTL)

G0 (another initial state) specified by sk = 0∧a= 0∧b = 0∧ep = 0∧en= 1∧gf = 0

AG(gf = 0)=⇒AG(G0)
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The quiescence phase blocking in absence of growth factors

earlyG1

sk+sk+ en- sk+

CPR Recruitment at all ORI
(Complexes of Pre-Replication)

CPR Activation

a+ sk- sk- a+

en+

b+

en-b+ep+a-a-b-b-

en+

ep-

G0

•
gf−

G1
S (Replication)

G2

M (Mitosis)
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What are the models that verify the major properties of the cell cycle?

Results using our tool TotemBioNet

Among the 7×1018 possible models, only 32 satisfy the cell cycle major properties.
The canonical cell cycle (oscillation) and the quiescence steady state
Mathematically proven by deduction

"It is through deduction that we descend from the general principle (axioms) to the
particular case (theorem), without any additional biological experience"

-
Claude Bernard - Principes de médecine expérimentale
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Checkpoints are intrisically discrete mechanisms

Cell cycle discrete phase in common language
{earlyG1} sk+;en−;sk+

G1
;a+;sk−;sk−

S
;a+;en+;b+;en−

G2
;b+;ep+;a−;a−;b−;b−;ep−;en+

M
{earlyG1}

A phase is defined by an initial state and unordered set of events.

Discrete definition of cell cycle checkpoints
A completion requirement of events of a given phase before the onset of the first
event of next phase. If each checkpoint is satisfied then the cell ensures the
transmission of intact DNA to its daughter cell.

Hypothesis
A checkpoint does not work on the basis of a regulation delay but on the basis of
a chronology of events
No chronometric modeling study (EDO systems or hybrid formalisms)
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Checkpoints are intrisically discrete mechanisms

sk+sk+ en- sk+

CPR Recruitment
(Complexes of Pre-Replication)

"

a+ sk- sk- a+

en+

b+

en-b+ep+a-a-b-b-

en+

ep-

G1
S (replication)

G2

M (mitose)

Mitosis Exit G1/S S/G2

G2/M
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Checkpoint formalization in 1st order logic

The generic predicate checkpoint
∃σ | ∀πi ∈ [G1,S ,G2,M], ∀X ,∀Y (two events of the form v + | v−),
canEndσ(X ,πi) ∧ canStartσ(Y ,πi+1)=⇒ isRequiredσ(X ,Y )

The predicates canEnd and canStart
canEndσ(X,πi )⇐⇒∃ p′ ∈ permutations(p) | (σ(wp({init}p′{final})) ∧ X = last(p′))

canStartσ(Y ,πi)⇐⇒∃ p′ ∈ permutations(p) | (σ(wp({init}p′{final}))∧Y =first(p′))

The predicate isRequired
X = x +or x−, Y = y +or y−
isRequired(X,Y )⇐⇒ (σ(Ky ,ωbefore)−ηbefore)×(σ(Ky ,ωafter )−ηafter)≤ 0
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What are the models that verify the 4 cell cycle checkpoints?

Results after implementation in Prolog

Conclusion: 3 of the 4 modelled checkpoints are satisfied.
Not the mitosis exit checkpoint !
Identification of a biological counter-example . . . of the generic definition
Towards a new definition of the mitosis exit checkpoint (work in progress)

Checkpoint Eval Output (|models |= checkpoint|) Computation time
G1/S True 24/32 1.9s
S/G2 True 32/32 11s
G2/M True 32/32 1h10min

Mitosis Exit False 0/32 1h12min
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Modelling conclusions

The modeled interactions are consistent with the cell cycle and 3 of its
checkpoints.
Spoil: after revision of the definition, the mitosis exit checkpoint is also verified.
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Cell cycle checkpoints and integration of oscillating processes

Sulli et al. 2019 - Trends Cancer

Cellular processes are
intrinsically interdependant
Circadian oscillator is linked
to many cellular processes
Oscillators coupling
understanding
Anticancer chronotherapy
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At the interface between biology, mathematics and computer science

Biology : study of the complexity of life through experimentations
(abductive science)
Mathematics : formalization of knowledge on which rules of reasoning are applied
(e.g. deductive science)
Computer science : automation of mathematical calculations
(the human being is the worst calculator)

Towards theoretical biology?
Our logical approach: encoding biological knowledge in a mathematical language to

automatically deduce conclusions for designing new biological experiments.
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