A discrete modelling study devoted to the formalization and verification of mammalian cell cycle checkpoints.

Déborah Boyenval Public Lifeware Seminar

March 29, 2022

 Introduction
 Phase and checkpoint generic concept

 •oo
 ooooooo

Phase formalization: René Thomas's formalism and Hoare logic 000000000000

Our cell cycle model and its checkpoints 000000000000

Context: pluridisciplinary research project

Understanding the interactions between oscillating biological systems

SPARKS Team Gilles Bernot and Jean-Paul Comet

Franck Delaunay Team

Our cell cycle model and its checkpoints

Mammalian cell cycle

The Cell Cycle Principles of Control - D. Morgan - Primers in Biology. 2006.

Phase formalization: René Thomas's formalism and Hoare logic

Our cell cycle model and its checkpoints 000000000000

Molecular regulators of the cell cycle

The Cell Cycle - Principles of Control - D. Morgan - Primers in Biology. 2006.

- G1/S cyclin/Cdk: cycD/Cdk4-6, cycE/Cdk2
- S cyclin/Cdk: cycA/Cdk2-1
- M cyclin/Cdk: cycB/Cdk2-1
- APC: APC-cdh1, APC-cdc20

Introduction Phase and checkpoint generic concept •••••••• Phase formalization: René Thomas's formalism and Hoare logic ${\tt oooooooooooo}$

What is a cell cycle phase?

A phase π_i

- is a sequence of events of the form e_1, \ldots, e_n
- which connects an initial η_i and a final state η_f

Phase formalization: René Thomas's formalism and Hoare logic

What is a cell cycle phase?

A phase π_i

- is a sequence of events of the form e_1, \ldots, e_n
- which connects an initial η_i and a final state η_f

Our cell cycle model and its checkpoints

What is a cell cycle phase?

A phase π_i

- is a sequence of events of the form e_1, \ldots, e_n
- which connects an initial η_i and a final state η_f

O Canonical phase: a given *consensus* sequence of events

Our cell cycle model and its checkpoints

What is a cell cycle phase?

A phase π_i

- is a sequence of events of the form e_1, \ldots, e_n
- which connects an initial η_i and a final state η_f

- **O Canonical phase**: a given *consensus* sequence of events
- ② Its hyper-rectangle: set of all permutations of the canonical sequence

Our cell cycle model and its checkpoints

What is a cell cycle phase?

A phase π_i

- is a sequence of events of the form e_1, \ldots, e_n
- which connects an initial η_i and a final state η_f

- **O Canonical phase**: a given *consensus* sequence of events
- ② Its hyper-rectangle: set of all permutations of the canonical sequence
- Admissible subset: permutations observed within the *biological* systems (formalized by a *mathematical* model)

Phase formalization: René Thomas's formalism and Hoare logic 000000000000

Our cell cycle model and its checkpoints

A canonical phase and its hyper-rectangle

Phase formalization: René Thomas's formalism and Hoare logic 000000000000

If some events are not biologically admissible ...

Our cell cycle model and its checkpoints ${\scriptstyle 000000000000}$

Thus some states are unreachable from the initial state of the phase

Introduction	Phase and	checkpoint	generic	concep
	0000000			

Admissible subset

 Introduction
 Phase and checkpoint generic concept

 000
 0000000

Phase formalization: René Thomas's formalism and Hoare logic 000000000000

Checkpoint between two adjacent phases

Introduction	Phase and checkpoint generic concept	Phase formalization: René Thomas's formalism and Hoare logic	Our cell cycle model and its checkpoints
	000000		

Formalization of a checkpoint between two-adjacent phase

- **(**) No permutation allowed: events that canEnd π_i and those that canStart π_{i+1}
- Permutations of events admitted by the cell cycle model

Introduction	Phase and checkpoint generic concept	Phase formalization: René Thomas's formalism and Hoare logic	Our cell cycle model and its checkpoints
	000000		

Formalization of a checkpoint between two-adjacent phase

- **(**) No permutation allowed: events that canEnd π_i and those that canStart π_{i+1}
- Permutations of events admitted by the cell cycle model

René Thomas modelling framework and Genetically modified Hoare logic

Our cell cycle model and its checkpoints 000000000000

The René Thomas formalism

Biological Regulatory Graph with Multiplex $\mathcal{G} = (V, M, E)$

- V: a finite set of variables v together with a bound $b_v \in \mathbb{N}^*$
- M: a finite set of multiplexes m labelled by a propositinal formula φ_m (atoms: v ≥ n where n ∈ [[0, b_v]]).
- *E*: a set of edges where $E \subseteq M \times V$

 $E^{-1}(v)$: the set of predecessors of v

Introduction	Phase and checkpoint generic concept

State η

substitution $\eta: V \to \mathbb{N}$ such that $\forall v \in V, \ \eta(v) \in [0, b_v]$

Introduction	Phase and check	point	generic	concept

Our cell cycle model and its checkpoints 000000000000

State η

substitution $\eta: V \to \mathbb{N}$ such that $\forall v \in V, \ \eta(v) \in [0, b_v]$

Set of resources ω of a variable v within a state η

Given a state η , ω is the set resources of v if $\eta \models \Phi_v^{\omega}$ where: $\Phi_v^{\omega} \equiv (\bigwedge_{m \in \omega} \varphi_m) \land (\bigwedge_{m \in (E^{-1}(v) \setminus \omega)} \neg \varphi_m)$

Introduction	Phase and check	point	generic	concept

Our cell cycle model and its checkpoints 000000000000

State η

substitution $\eta: V \to \mathbb{N}$ such that $\forall v \in V, \ \eta(v) \in [0, b_v]$

Set of resources ω of a variable v within a state η

Given a state η , ω is the set resources of v if $\eta \models \Phi_v^{\omega}$ where: $\Phi_v^{\omega} \equiv (\bigwedge_{m \in \omega} \varphi_m) \land (\bigwedge_{m \in (E^{-1}(v) \setminus \omega)} \neg \varphi_m)$

 $K_{v,\omega}$ symbolizes a dynamical parameter

Parameterization σ

substitution $\sigma: \mathscr{K} \to \mathbb{N}$ such that $\forall K_{\nu,\omega} \in \mathscr{K}, \ \sigma(K_{\nu,\omega}) \in [0, b_{\nu}]$

Our cell cycle model and its checkpoints 000000000000

The René Thomas' formalism

 $K_{a,\{\}} = 0, K_{a,\{AbsB\}} = 1,$ $K_{b,\{\}} = 0, K_{b,\{PresA\}} = 1.$

Our cell cycle model and its checkpoints 000000000000

The René Thomas' formalism

 $K_{a,\{\}} = 0, K_{a,\{AbsB\}} = 1,$ $K_{b,\{\}} = 0, K_{b,\{PresA\}} = 1.$

Asynchronous transitions graph

Given a parameterization σ ,

- Set of vertices: set of possible states,
- there is a transition $\eta \to \eta'$ if $\exists v \in V$ such that $\sigma(K_{v,\omega}) \neq \eta(v)$ and:

$$\begin{array}{l} \bullet \quad \eta'(v) = \eta(v) + 1 \text{ if } \sigma(K_{v,\omega}) > \eta(v) \\ \bullet \quad \eta'(v) = \eta(v) - 1 \text{ if } \sigma(K_{v,\omega}) < \eta(v) \\ \bullet \quad \forall v' \in V, v' \neq v \quad \Rightarrow \quad \eta'(v') = \eta(v') \end{array}$$

Phase formalization: René Thomas's formalism and Hoare logic ${\tt ooo}{\tt oooo}{$

Our cell cycle model and its checkpoints 000000000000

The René Thomas' formalism

René Thomas: syntax and semantic of an event
Change of value of a variable: v+ or v−.
Transition between two adjacent states η → η'

Phase formalization: René Thomas's formalism and Hoare logic $\tt 0000 \bullet 00000000$

Our cell cycle model and its checkpoints 000000000000

The René Thomas' formalism

Syntax and semantic of an event

- Change of value of a variable: v + or v -.
- Transition between two adjacent states $\eta \rightarrow \eta'$

Phase formalization: René Thomas's formalism and Hoare logic $\tt 0000 \bullet 00000000$

Our cell cycle model and its checkpoints 000000000000

The René Thomas' formalism

Syntax and semantic of an event

- Change of value of a variable: v + or v -.
- Transition between two adjacent states $\eta \rightarrow \eta'$
- a+;b+;a−,b−

Phase formalization: René Thomas's formalism and Hoare logic ${\tt oooooooooooo}$

The genetically modified Hoare logic: syntax and semantics of a trace

Our cell cycle model and its checkpoints 000000000000

The genetically modified Hoare logic: syntax and semantics of a trace

Our cell cycle model and its checkpoints 000000000000

The genetically modified Hoare logic: syntax and semantics of a trace

Our cell cycle model and its checkpoints 00000000000

The genetically modified Hoare logic: syntax and semantics of a trace

To prove that the formalized biological trace is *admitted* by a Thomas model:

• Hoare logic proves {*P*} *p* {*Q*} correctness

Our cell cycle model and its checkpoints 00000000000

The genetically modified Hoare logic: syntax and semantics of a trace

- Hoare logic proves {*P*} *p* {*Q*} correctness
- Inference rules (encoding Thomas dynamics)

Our cell cycle model and its checkpoints 00000000000

The genetically modified Hoare logic: syntax and semantics of a trace

- Hoare logic proves {*P*} *p* {*Q*} correctness
- Inference rules (encoding Thomas dynamics) and weakest precondition (wp)

Our cell cycle model and its checkpoints ${\tt oooooooooooo}$

The genetically modified Hoare logic: syntax and semantics of a trace

- Hoare logic proves {*P*} *p* {*Q*} correctness
- Inference rules (encoding Thomas dynamics) and weakest precondition (wp)

Our cell cycle model and its checkpoints 000000000000

The genetically modified Hoare logic: inference rules

Hoare logic sequential composition rules

 $\frac{\{P_1\} \ p_1 \ \{P_2\} \qquad \{P_2\} \ p_2 \ \{Q\}}{\{P_1\} \ p_1; \ p_2 \ \{Q\}}$

Dijkstra: wp(a+;b+;a-;b-,Q)

Phase formalization: René Thomas's formalism and Hoare logic 00000000000000

Our cell cycle model and its checkpoints 00000000000

The genetically modified Hoare logic: inference rules

Hoare logic sequential composition rules

 $\frac{\{P_1\} \ p_1 \ \{P_2\} \qquad \{P_2\} \ p_2 \ \{Q\}}{\{P_1\} \ p_1; \ p_2 \ \{Q\}}$

Dijkstra: wp(a+;b+;a-;b-,Q) = wp(a+;b+;a-,wp(b-,Q))

Phase formalization: René Thomas's formalism and Hoare logic 00000000000000

Our cell cycle model and its checkpoints 000000000000

The genetically modified Hoare logic: inference rules

Decrementation rules

$$\{\Phi_v^- \land Q[v \leftarrow v-1]\} v = \{Q\}$$

$$\Phi_{\nu}^{-} = \bigwedge_{\omega \in E^{-1}(\nu)} (\Phi_{\nu}^{\omega} \Rightarrow \underline{K_{\nu,\omega} < \nu})$$

wp(a+;b+;a-;b-,Q) = wp(a+;b+;a-,wp(b-,Q))

Our cell cycle model and its checkpoints 000000000000

The genetically modified Hoare logic: inference rules

$$wp(a+;b+;a-;b-,Q) = wp(a+;b+;a-,\{a=0 \land b=1 \land K_{b,\{l<1\}}\}$$

Our cell cycle model and its checkpoints 000000000000

The genetically modified Hoare logic: inference rules

 $wp(a+;b+;a-;b-,Q) = wp(a+;b+,\{a=1 \land b=1 \land K_{b,\{\}<1} \land K_{a,\{AbsB\}<1}\})$

Our cell cycle model and its checkpoints 000000000000

The genetically modified Hoare logic: inference rules

 $wp(a+;b+;a-;b-,Q) = wp(a+, \{a=1 \land b=0 \land K_{b,\{\}<1} \land K_{a,\{AbsB\}<1} \land K_{b,\{PresA\}>1}\})$

Our cell cycle model and its checkpoints 000000000000

The genetically modified Hoare logic: inference rules

• $wp(p, Q) = \{a = 0 \land b = 0 \land K_{b, \{\} < 1} \land K_{a, \{AbsB\} < 1} \land K_{b, \{PresA\} > 1} \land K_{a, \{\} > 1}\}$

Our cell cycle model and its checkpoints 000000000000

The genetically modified Hoare logic: inference rules

- $wp(p, Q) = \{a = 0 \land b = 0 \land K_{b, \{\} < 1} \land K_{a, \{AbsB\} < 1} \land K_{b, \{PresA\} > 1} \land K_{a, \{\} > 1}\}$
- Bernot et al. CMSB 2015, Bernot et al. TCS 2019
- HoareFol (Folschette 2019), TotemBioNet (Boyenval et al. CMSB 2020)
- Model selection: $\sigma \mid \forall \eta_P \models P, \sigma, \eta_P \models wp(p, Q)$

Introduction	Phase and checkpoint generic concept	Phase formalization: René Thomas's formalism and Hoare logic	Our cell cycle model and its checkpoints
			00000000000

Formalization of a checkpoint between two-adjacent phase

- **(**) No permutation allowed: events that canEnd π_i and those that canStart π_{i+1}
- Permutations of events admitted by the cell cycle model

Proof of concept

Phase formalization: René Thomas's formalism and Hoare logic 000000000000

Our cell cycle model and its checkpoints

Molecular regulators of the cell cycle

The Cell Cycle - Principles of Control - D. Morgan - Primers in Biology. 2006.

- G1/S cyclin/Cdk: cycD/Cdk4-6, cycE/Cdk2 (variable sk)
- S cyclin/Cdk: cycA/Cdk2-1 (variable a)
- M cyclin/Cdk: cycB/Cdk2-1 (variable b)
- **APC**: APC-cdh1 (variable *en*), APC-cdc20 (variable *ep*).

Our updated cell cycle model reflects checkpoints

Phase formalization: René Thomas's formalism and Hoare logic ${\tt ococococococo}$

$$\{P_{G1}\} = \underbrace{sk+; en-; sk+; a+; sk-; sk-; a+; en+; b+; en-; b+; ep+; a-; a-; b-; b-; ep-; en+}_{G1} = \{P_{G1}\}$$

Phase formalization: René Thomas's formalism and Hoare logic 000000000000

Phase formalization: René Thomas's formalism and Hoare logic 000000000000

Phase formalization: René Thomas's formalism and Hoare logic 000000000000

Our cell cycle model and its checkpoints $\texttt{OOO}{\bullet}\texttt{OOOOOOOO}$

Our cell cycle model and its checkpoints

Admitted subset of the G1 hyper-rectangle

- Only the canonical path is admitted by our cell cycle model
- $wp(p, Q_{G1})$ is unsatisfiable for all $p \in \{(sk+; sk+; en-), (en-; sk+; sk+)\}$

Phase formalization: René Thomas's formalism and Hoare logic ${\tt oooooooooooo}$

Our cell cycle model and its checkpoints ${\tt ooooooooooo}$

The admitted subpart of the hyper-rectangle by the model

Canonical phase

Hyper-rectangle

Biologically admitted states

Our cell cycle model and its checkpoints ${\scriptstyle 0000000000000}$

canEnd and canStart predicates

- Canonical phase π_i : {*P*} *p* {*Q*}
- Output Provide the Hyper-rectangle
- Admitted paths within the hyper-rectangle

Our cell cycle model and its checkpoints

canEnd and canStart predicates

- Canonical phase π_i : $\{P\} \ p \ \{Q\}$
- Output Provide the Hyper-rectangle
- Admitted paths within the hyper-rectangle

 $canEnd_{\sigma}(E,\pi_i) \iff \exists p' \in permutations(p) \mid (\sigma(wp(p',Q)) \land E = last(p'))$

 $canStart_{\sigma}(S, \pi_i) \iff \exists p' \in permutations(p) \mid (\sigma(wp(p', Q)) \land S = first(p'))$

Boyenval et al. 2020, CMSB Tool paper about TotemBioNet gitlab.com/totembionet/

Our cell cycle model and its checkpoints ${\tt oooooooooooo}$

isRequired predicate and finally a first *checkpoint* predicate

Our cell cycle model and its checkpoints ${\tt oooooooooooo}$

isRequired predicate and finally a first *checkpoint* predicate

$checkpoint(\pi_i, \pi_{i+1})$

$$\exists \sigma \mid \forall \pi_i \in [G1, S, G2, M]$$

Our cell cycle model and its checkpoints

isRequired predicate and finally a first *checkpoint* predicate

$checkpoint(\pi_i, \pi_{i+1})$

$\underline{\exists \sigma} \mid \underline{\forall \pi_i} \in [G1, S, G2, M], \forall S, \forall E$

Phase formalization: René Thomas's formalism and Hoare logic ${\tt ococococococo}$

Our cell cycle model and its checkpoints ${\scriptstyle 0000000000000}$

SWI Prolog

isRequired predicate and finally a first *checkpoint* predicate

 $checkpoint(\pi_i, \pi_{i+1})$

$$\exists \sigma \mid \forall \pi_i \in [G1, S, G2, M], \forall S, \forall E ,$$

$$\operatorname{canEnd}_{\sigma}(E,\pi_i) \wedge \operatorname{canStart}_{\sigma}(S,\pi_{i+1}) \Longrightarrow \operatorname{isRequired}_{\sigma}(E,S)$$

Our cell cycle model and its checkpoints

isRequired predicate and finally a first *checkpoint* predicate

 $checkpoint(\pi_i, \pi_{i+1})$

$$\exists \sigma \mid \forall \pi_i \in [G1, S, G2, M], \forall S, \forall E ,$$

 $\operatorname{canEnd}_{\sigma}(E,\pi_i) \wedge \operatorname{canStart}_{\sigma}(S,\pi_{i+1}) \Longrightarrow \operatorname{isRequired}_{\sigma}(E,S) \qquad \operatorname{SWIProlog}$

Our cell cycle model and its checkpoints

isRequired predicate and finally a first *checkpoint* predicate

isRequired_{σ}(E,S)

Our cell cycle model and its checkpoints

isRequired predicate and finally a first *checkpoint* predicate

$$isRequired_{\sigma}(E,S) \Leftrightarrow (\sigma(K_{v_s,\omega_{beforeE}}) - \eta_{beforeE}(v_s)) \times (\sigma(K_{v_s,\omega_{afterE}}) - \eta_{afterE}(v_s)) \leq 0$$

Our cell cycle model and its checkpoints ${\scriptstyle 00000000000000}$

Does our cell cycle model reflect checkpoints? The answer

π	p_{π} : canonical path	P_{π} : precondition	Q_{π} : postcondition
G1	sk+,en-,sk+	$sk = 0 \land ep = 0 \land a = 0 \land b = 0 \land en = 1$	P _S
S	a+,sk-,sk-	$sk = 2 \land ep = 0 \land a = 0 \land b = 0 \land en = 0$	P_{G2}
G2	a+,en+,b+,en-	$sk = 0 \land ep = 0 \land a = 1 \land b = 0 \land en = 0$	P _M
М	b+,ep+,a-,a-,b-,b-,en+,ep-	$sk = 0 \land ep = 0 \land a = 2 \land b = 1 \land en = 0$	P_{G1}

Inputs

- Cell cycle regulations graph
- Set of parametrizations $\boldsymbol{\sigma}$
- $\{P_{\pi}\} p_{\pi} \{Q_{\pi}\}$ $\forall \pi \in \{G1, S, G2, M\}$

Our cell cycle model and its checkpoints ${\scriptstyle 0000000000000}$

Does our cell cycle model reflect checkpoints? The answer

π	p_{π} : canonical path	P_{π} : precondition	Q_{π} : postcondition
G1	sk+,en-,sk+	$sk = 0 \land ep = 0 \land a = 0 \land b = 0 \land en = 1$	P _S
S	a+,sk-,sk-	$sk = 2 \land ep = 0 \land a = 0 \land b = 0 \land en = 0$	P_{G2}
G2	a+,en+,b+,en-	$sk = 0 \land ep = 0 \land a = 1 \land b = 0 \land en = 0$	P _M
М	b+,ep+,a-,a-,b-,b-,en+,ep-	$sk = 0 \land ep = 0 \land a = 2 \land b = 1 \land en = 0$	P_{G1}

Inputs

- Cell cycle regulations graph
- Set of parametrizations σ
- { P_{π} } p_{π} { Q_{π} } $\forall \pi \in \{G1, S, G2, M\}$

 \rightarrow checkpoint.pl \rightarrow

Our cell cycle model and its checkpoints

Does our cell cycle model reflect checkpoints? The answer

π	p_{π} : canonical path	P_{π} : precondition	Q_{π} : postcondition
G1	sk+,en-,sk+	$sk = 0 \land ep = 0 \land a = 0 \land b = 0 \land en = 1$	P _S
S	a+,sk-,sk-	$sk = 2 \land ep = 0 \land a = 0 \land b = 0 \land en = 0$	P_{G2}
G2	a+,en+,b+,en-	$sk = 0 \land ep = 0 \land a = 1 \land b = 0 \land en = 0$	P _M
М	b+,ep+,a-,a-,b-,b-,en+,ep-	$sk = 0 \land ep = 0 \land a = 2 \land b = 1 \land en = 0$	P_{G1}

Inputs

- Cell cycle regulations graph
- Set of parametrizations σ
- { P_{π} } p_{π} { Q_{π} } $\forall \pi \in \{G1, S, G2, M\}$

 \rightarrow checkpoint.pl \rightarrow

Outputs

•
$$\sigma \models wp(p_{\pi_i}, Q_{\pi_i})$$

Our cell cycle model and its checkpoints ${\scriptstyle 0000000000000}$

Does our cell cycle model reflect checkpoints? The answer

π	p_{π} : canonical path	P_{π} : precondition	Q_{π} : postcondition
G1	sk+,en-,sk+	$sk = 0 \land ep = 0 \land a = 0 \land b = 0 \land en = 1$	P _S
S	a+,sk-,sk-	$sk = 2 \land ep = 0 \land a = 0 \land b = 0 \land en = 0$	P_{G2}
G2	a+,en+,b+,en-	$sk = 0 \land ep = 0 \land a = 1 \land b = 0 \land en = 0$	P _M
М	b+,ep+,a-,a-,b-,b-,en+,ep-	$sk = 0 \land ep = 0 \land a = 2 \land b = 1 \land en = 0$	P_{G1}

Inputs

- Cell cycle regulations graph
- Set of parametrizations σ
- { P_{π} } p_{π} { Q_{π} } $\forall \pi \in \{G1, S, G2, M\}$

 \rightarrow checkpoint.pl \rightarrow

Outputs

•
$$\sigma \models wp(p_{\pi_i}, Q_{\pi_i})$$

 $\land checkpoint(\pi_i, \pi_{i+1})$

Our cell cycle model and its checkpoints

Does our cell cycle model reflect checkpoints? The answer

π	p_{π} : canonical path	P_{π} : precondition	Q_{π} : postcondition
G 1	sk+,en-,sk+	$sk = 0 \land ep = 0 \land a = 0 \land b = 0 \land en = 1$	PS
S	a+,sk-,sk-	$sk = 2 \land ep = 0 \land a = 0 \land b = 0 \land en = 0$	P _{G2}
G2	a+,en+,b+,en-	$sk = 0 \land ep = 0 \land a = 1 \land b = 0 \land en = 0$	P _M
М	b+,ep+,a-,a-,b-,b-,en+,ep-	$sk = 0 \land ep = 0 \land a = 2 \land b = 1 \land en = 0$	P_{G1}

Inputs

- Cell cycle regulations graph
- Set of parametrizations σ
- { P_{π} } p_{π} { Q_{π} } $\forall \pi \in \{G1, S, G2, M\}$

 \rightarrow checkpoint.pl \rightarrow

Outputs

- $\sigma \models wp(p_{\pi_i}, Q_{\pi_i})$ $\land checkpoint(\pi_i, \pi_{i+1})$
- For each σ and π :
 - $E \mid canEnd(E,\pi)$
 - **2** $S \mid canStart(S,\pi)$

Our cell cycle model and its checkpoints oooooooooooooo

Does our cell cycle model reflect checkpoints? Outputs

Checkpoint	Eval	$\mid \sigma \models checkpoint \mid$	
G1/S	True	16/ <u>32</u>	
S/G2	True	32/ <u>32</u>	
G2/M	True 32/ <u>32</u>		
M/G1	True	32/ <u>32</u>	

Our cell cycle model and its checkpoints ooooooooooooooo

Does our cell cycle model reflect checkpoints? Outputs

Checkpoint	Eval	$\mid \sigma \models checkpoint \mid$	
G1/S	True	16/ <u>32</u>	
S/G2	True	32/ <u>32</u>	
G2/M	True 32/ <u>32</u>		
M/G1	True 32/ <u>32</u>		

π	$canStart(S,\pi)$	$canEnd(E,\pi)$
G1	S=[sk+]	E=[sk+]
S	S=[a+]	E=[sk-]
G2	S=[a+]	E=[en-]
М	S=[b+]	E=[a-,b-,en+,ep-]

Our cell cycle model and its checkpoints oooooooooooooo

Does our cell cycle model reflect checkpoints? Outputs

Checkpoint	Eval	$\mid \sigma \models checkpoint \mid$	
G1/S	True 16/ <u>32</u>		
S/G2	True	32/ <u>32</u>	
G2/M	True 32/ <u>32</u>		
M/G1	True	32/ <u>32</u>	

π	$canStart(S,\pi)$	$canEnd(E,\pi)$
G1	S=[sk+]	E=[sk+]
S	S=[a+]	E=[sk-]
G2	S=[a+]	E=[en-]
М	S=[b+] E=[a-,b-,en+,ep-]	

0/32? Not yet!

Introduction	Phase and checkpoint generic concept	Phase formalization: René Thomas's formalism and Hoare logic	Our cell cycle model and its checkpoints
			00000000000

Conclusion

Proof of concept: formalization of a checkpoint between two adjacent phases

Conclusion

Proof of concept: formalization of a checkpoint between two adjacent phases

Formalization of a checkpoint in the case of a phase exit

- **1** By excess formalization of a phase domain using its hyper-rectangle
- In Negation of the checkpoint bypass

Enrich the approach with additional properties on cell cycle checkpoints

- Any event in S and M already realized cannot be undone
- Integration of DNA damage response pathways

Conclusion

Proof of concept: formalization of a checkpoint between two adjacent phases

Formalization of a checkpoint in the case of a phase exit

- **1** By excess formalization of a phase domain using its hyper-rectangle
- In Negation of the checkpoint bypass

Enrich the approach with additional properties on cell cycle checkpoints

- Any event in S and M already realized cannot be undone
- Integration of DNA damage response pathways

Integration of DNA damage response pathways

Gabrielli et al. 2012

Tunnel phase

Given $\pi \in [G1, S, G2, M]$, the initial (resp. final) state of a phase π described by the a precondition P_{π} (resp. Q_{π}):

$$isTunnel(\pi) \iff P_{\pi} \Rightarrow A\Big(\psi_{H_{\pi}} \lor \neg(\bigvee_{\pi' \neq \pi} \psi_{H_{\pi'}}) \cup Q_{\pi}\Big)$$

where ψ_H is the characteristic formula of the hyper-rectangle H