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Mammalian cell cycle

The Cell Cycle
Principles of Control - D. Morgan - Primers in Biology. 2006. 3 / 68
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Molecular regulators of the cell cycle

The Cell Cycle - Principles of Control - D. Morgan - Primers in Biology. 2006.

G1/S cyclin/Cdk: cycD/Cdk4-6, cycE/Cdk2
S cyclin/Cdk: cycA/Cdk2-1
M cyclin/Cdk: cycB/Cdk2-1
APC: APC-cdh1, APC-cdc20 4 / 68
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What is a cell cycle phase?

A phase πi

is a sequence of events of the form e1, . . . ,en

which connects an initial ηi and a final state ηf

ηi ηf

e1 e2 e3 e4 e5 e6

1 Canonical phase: a given consensus sequence of events

2 Its hyper-rectangle: set of all permutations of the canonical sequence

3 Admissible subset: permutations observed within the biological systems
(formalized by a mathematical model)
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A canonical phase and its hyper-rectangle

ηi
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Hyper-rectangle

3→ : e1,e5,e6

3 ↓ : e2,e3,e4
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If some events are not biologically admissible . . .
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Thus some states are unreachable from the initial state of the phase
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Admissible subset
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Checkpoint between two adjacent phases
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Formalization of a checkpoint between two-adjacent phase
1 No permutation allowed: events that canEnd πi and those that canStart πi+1
2 Permutations of events admitted by the cell cycle model

René Thomas modelling framework and Genetically modified Hoare logic
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The René Thomas formalism

Biological Regulatory Graph with Multiplex G = (V ,M ,E )
V : a finite set of variables v together with a bound bv ∈N∗

M: a finite set of multiplexes m labelled by a propositinal formula ϕm
(atoms: v ≥ n where n ∈ J0,bv K).
E : a set of edges where E ⊆M ×V

E−1(v): the set of predecessors of v
17 / 68
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b = 0
(inactive)

b = 1
(active)

a = 0
(inactive)

a = 1
(active)

Ka,{}

Kb,{}

Ka,{AbsB}

Kb,{}

Ka,{AbsB}

Kb,{PresA}

Ka,{}

Kb,{PresA}

State η
substitution η : V →N such that
∀v ∈V , η(v) ∈ [0,bv ]

Set of resources ω of a variable v within a state η
Given a state η, ω is the set resources of v if
η |=Φωv where:

Φωv ≡ (
∧

m∈ω
ϕm) ∧ (

∧
m ∈ (E−1(v) \ ω)

¬ϕm)

Kv ,ω symbolizes a dynamical parameter

Parameterization σ
substitution σ : K →N such that
∀Kv ,ω ∈K , σ(Kv ,ω) ∈ [0,bv ]
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The René Thomas’ formalism

b = 0
(inactive)

b = 1
(active)

a = 0
(inactive)

a = 1
(active)

Ka,{}

Kb,{}

Ka,{AbsB}

Kb,{}

Ka,{AbsB}

Kb,{PresA}

Ka,{}

Kb,{PresA}

Ka,{} = 0, Ka,{AbsB} = 1,

Kb,{} = 0, Kb,{PresA} = 1.

Asynchronous transitions graph
Given a parameterization σ,

Set of vertices: set of possible states,

there is a transition η→ η′ if ∃v ∈V such that
σ(Kv ,ω) 6= η(v) and:

1 η′(v)= η(v)+1 if σ(Kv ,ω)> η(v)
2 η′(v)= η(v)−1 if σ(Kv ,ω)< η(v)
3 ∀v ′ ∈V ,v ′ 6= v ⇒ η′(v ′)= η(v ′)

21 / 68



Introduction Phase and checkpoint generic concept Phase formalization: René Thomas’s formalism and Hoare logic Our cell cycle model and its checkpoints

The René Thomas’ formalism

b = 0
(inactive)

b = 1
(active)

a = 0
(inactive)

a = 1
(active)

Ka,{}

Kb,{}

Ka,{AbsB}

Kb,{}

Ka,{AbsB}

Kb,{PresA}

Ka,{}

Kb,{PresA}

Ka,{} = 0, Ka,{AbsB} = 1,

Kb,{} = 0, Kb,{PresA} = 1.

Asynchronous transitions graph
Given a parameterization σ,

Set of vertices: set of possible states,

there is a transition η→ η′ if ∃v ∈V such that
σ(Kv ,ω) 6= η(v) and:

1 η′(v)= η(v)+1 if σ(Kv ,ω)> η(v)
2 η′(v)= η(v)−1 if σ(Kv ,ω)< η(v)
3 ∀v ′ ∈V ,v ′ 6= v ⇒ η′(v ′)= η(v ′)

22 / 68



Introduction Phase and checkpoint generic concept Phase formalization: René Thomas’s formalism and Hoare logic Our cell cycle model and its checkpoints

The René Thomas’ formalism

b = 0
(inactive)

b = 1
(active)

a = 0
(inactive)

a = 1
(active)

Ka,{}

Kb,{}

Ka,{AbsB}

Kb,{}
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Ka,{}
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a+

a−

b− b+
René Thomas: syntax and semantic of an event

Change of value of a variable: v+ or v−.
Transition between two adjacent states
η→ η′
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The genetically modified Hoare logic: syntax and semantics of a trace

precondition P path p postcondition Q

syntax :

 a = 0
b = 0

 a+ b+ a− b−; ; ;

 a = 0
b = 0



ηP |=P ηQ |=Q

semantics :
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The genetically modified Hoare logic: inference rules

Hoare logic sequential composition rules
{P1} p1 {P2} {P2} p2 {Q}

{P1} p1;p2 {Q}

semantics :

syntax :

 a = 0
b = 0

 a+ b+ a− b−; ; ;

 a = 0
b = 0


precondition P1 path p postcondition Q

Dijkstra: wp(a+;b+;a-;b-,Q)

= wp(a+;b+;a-,wp(b-,Q))

33 / 68



Introduction Phase and checkpoint generic concept Phase formalization: René Thomas’s formalism and Hoare logic Our cell cycle model and its checkpoints

The genetically modified Hoare logic: inference rules

Hoare logic sequential composition rules
{P1} p1 {P2} {P2} p2 {Q}

{P1} p1;p2 {Q}

semantics :

syntax :

 a = 0
b = 0

 a+ b+ a− b−; ; ;

 a = 0
b = 0


precondition P1 path p postcondition Q

Dijkstra: wp(a+;b+;a-;b-,Q) = wp(a+;b+;a-,wp(b-,Q))
34 / 68



Introduction Phase and checkpoint generic concept Phase formalization: René Thomas’s formalism and Hoare logic Our cell cycle model and its checkpoints

The genetically modified Hoare logic: inference rules

Decrementation rules

{Φ−
v ∧ Q[v ← v −1]} v − {Q}

Constraint on parametrization
Φ−

v = ∧
ω∈E−1(v)

(Φωv ⇒Kv ,ω < v)

semantics :

syntax :

 a = 0
b = 0

 a+ b+ a− b−; ; ;

 a = 0
b = 0


precondition P1 path p postcondition Q

wp(a+;b+;a-;b-,Q) = wp(a+;b+;a-,wp(b-,Q))
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The genetically modified Hoare logic: inference rules

precondition P1 path p postcondition Q

semantics :

syntax :

 a = 0
b = 0

 a+ b+ a− b−; ; ;

 a = 0
b = 0



wp(a+;b+;a-;b-,Q)= wp(a+;b+;a-, {a = 0∧b = 1∧Kb,{}<1})
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The genetically modified Hoare logic: inference rules

precondition P1 path p postcondition Q

semantics :

syntax :

 a = 0
b = 0

 a+ b+ a− b−; ; ;

 a = 0
b = 0



wp(a+;b+;a-;b-,Q) = wp(a+;b+, {a = 1∧b = 1∧Kb,{}<1∧Ka,{AbsB}<1})
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The genetically modified Hoare logic: inference rules

precondition P1 path p postcondition Q

semantics :

syntax :

 a = 0
b = 0

 a+ b+ a− b−; ; ;

 a = 0
b = 0



wp(a+;b+;a-;b-,Q) = wp(a+, {a = 1∧b = 0∧Kb,{}<1∧Ka,{AbsB}<1∧Kb,{PresA}>1})
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The genetically modified Hoare logic: inference rules

precondition P1 path p postcondition Q

semantics :

syntax :

 a = 0
b = 0

 a+ b+ a− b−; ; ;

 a = 0
b = 0



wp(p,Q) = {a = 0∧b = 0∧Kb,{}<1∧Ka,{AbsB}<1∧Kb,{PresA}>1∧Ka,{}>1}

Bernot et al. CMSB 2015, Bernot et al. TCS 2019
HoareFol (Folschette 2019), TotemBioNet (Boyenval et al. CMSB 2020)
Model selection: σ | ∀ηP |=P , σ,ηP |= wp(p,Q)
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Formalization of a checkpoint between two-adjacent phase
1 No permutation allowed: events that canEnd πi and those that canStart πi+1
2 Permutations of events admitted by the cell cycle model

Proof of concept
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Molecular regulators of the cell cycle

The Cell Cycle - Principles of Control - D. Morgan - Primers in Biology. 2006.

G1/S cyclin/Cdk: cycD/Cdk4-6, cycE/Cdk2 (variable sk)
S cyclin/Cdk: cycA/Cdk2-1 (variable a)
M cyclin/Cdk: cycB/Cdk2-1 (variable b)
APC: APC-cdh1 (variable en), APC-cdc20 (variable ep). 42 / 68
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Our updated cell cycle model reflects checkpoints
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The canonical cell cycle and its phases

{PG1} sk+;en−;sk+
G1

;a+;sk−;sk−
S

;a+;en+;b+;en−
G2

;b+;ep+;a−;a−;b−;b−;ep−;en+
M

{PG1}

sk+ en- sk+ a+ sk- sk- a+

en+

b+

en-b+ep+a-a-b-b-

en+

ep-

G1
S (replication)

G2

M (mitosis)

000011

ηM/G1 |=PG1 ηG1/S ηS/G2

ηG2/M

sk+en- a+

CPR Recruitment

PCNA activation CPR Activation
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Admitted subset of the G1 hyper-rectangle

sk+ sk+

en−

(000011)

(000001)

(100011) (200011)

(200001)

ηM/G1

ηG1/S |=QG1

en−

sk+
(100001)

en−

sk+

sk+ sk+

en−

(000011)

(000001)

(100011) (200011)

(200001)

ηM/G1

ηG1/S |=QG1

en−

sk+
(100001)

en−

sk+

Only the canonical path is admitted by our cell cycle model
wp(p,QG1) is unsatisfiable for all p ∈ {(sk+;sk+;en−),(en−;sk+;sk+)}
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The admitted subpart of the hyper-rectangle by the model

ηi
e1

e2e2

e5 e6

e5

e2

e3

e1

e3

e1

e4

e1

e4

e5

e3

e5

e4

e6

e2

e6

e6

e3

e4

ηf

Canonical phase

Hyper-rectangle

Biologically admitted states
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canEnd and canStart predicates
1 Canonical phase πi : {P} p {Q}
2 Hyper-rectangle
3 Admitted paths within the hyper-rectangle

canEndσ(E ,πi )⇐⇒∃ p′ ∈ permutations(p) | (σ(wp(p′,Q)) ∧ E = last(p′))

canStartσ(S,πi)⇐⇒∃ p′ ∈ permutations(p) | (σ(wp(p′,Q)) ∧ S =first(p′))

Boyenval et al. 2020, CMSB
Tool paper about TotemBioNet

gitlab.com/totembionet/
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isRequired predicate and finally a first checkpoint predicate

checkpoint(πi ,πi+1)
∃σ

| ∀πi ∈ [G1,S ,G2,M], ∀S ,∀E ,

canEndσ(E ,πi) ∧ canStartσ(S ,πi+1)=⇒ isRequiredσ(E ,S)

sk+ sk+

en-

000011

000001

100011 200011

200001200001

210001 110001 010001

100001 000001

en−

sk+
100001

en−

sk+ sk- sk−

sk− sk−

a+ a+ a+
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isRequired predicate and finally a first checkpoint predicate

isRequiredσ(E ,S)

E ≡ sk+

S ≡ a+

ηbeforeE ηafterE
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isRequired predicate and finally a first checkpoint predicate

isRequiredσ(E ,S)⇔ (σ(Kvs ,ωbeforeE )−ηbeforeE (vs))× (σ(Kvs ,ωafterE )−ηafterE (vs))≤ 0

E ≡ sk+

S ≡ a+

ηbeforeE ηafterE

S ≡ a+7
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Does our cell cycle model reflect checkpoints? The answer

π pπ: canonical path Pπ: precondition Qπ: postcondition
G1 sk+,en-,sk+ sk = 0∧ep = 0∧a = 0∧b = 0∧en= 1 PS
S a+,sk-,sk- sk = 2∧ep = 0∧a = 0∧b = 0∧en= 0 PG2

G2 a+,en+,b+,en- sk = 0∧ep = 0∧a = 1∧b = 0∧en= 0 PM
M b+,ep+,a-,a-,b-,b-,en+,ep- sk = 0∧ep = 0∧a = 2∧b = 1∧en= 0 PG1

Inputs
Cell cycle regulations
graph
Set of parametrizations σ
{Pπ} pπ {Qπ}
∀π ∈ {G1,S ,G2,M}

→ checkpoint.pl →
Outputs

σ |=wp(pπi ,Qπi )
∧ checkpoint(πi ,πi+1)

For each σ and π:
1 E | canEnd(E ,π)
2 S | canStart(S ,π)
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Does our cell cycle model reflect checkpoints? Outputs

Checkpoint Eval | σ |= checkpoint |
G1/S True 16/32
S/G2 True 32/32
G2/M True 32/32
M/G1 True 32/32

π canStart(S ,π) canEnd(E ,π)
G1 S=[sk+] E=[sk+]

S S=[a+] E=[sk-]

G2 S=[a+] E=[en-]

M S=[b+] E=[a-,b-,en+,ep-]

0/32? Not yet!
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Conclusion

Proof of concept: formalization of a checkpoint between two adjacent phases

Formalization of a checkpoint in the case of a phase exit
1 By excess formalization of a phase domain using its hyper-rectangle
2 Negation of the checkpoint bypass

Enrich the approach with additional properties on cell cycle checkpoints
Any event in S and M already realized cannot be undone
Integration of DNA damage response pathways

Thank you !
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Integration of DNA damage response pathways

Gabrielli et al. 2012
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Negation of checkpoint bypass

Tunnel phase
Given π ∈ [G1,S ,G2,M], the initial (resp. final) state of a phase π described by the a
precondition Pπ (resp. Qπ):

isTunnel(π) ⇐⇒ Pπ ⇒ A
(
ψHπ

∨¬(
∨
π′ 6=π

ψHπ′ ) U Qπ

)
where ψH is the characteristic formula of the hyper-rectangle H
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